PENETRATION OF CONCRETE TARGETS WITH OGIVE-NOSE STEEL RODS

D.J. FREW†, S.J. HANCHAK‡, M.L. GREEN†, and M.J. FORRESTAL§

†Waterways Experiment Station, Vicksburg, MS 39180-6199, U.S.A.
‡University of Dayton Research Institute, Dayton, OH 45469-0182, U.S.A.
§Sandia National Laboratories, Albuquerque, NM 87185-0315, U.S.A.

(Received 28 January 1997; in revised form 12 December 1997)

Summary—We conducted depth of penetration experiments in concrete targets with 3.0 caliber-radius-head, steel rod projectiles. The concrete targets with 9.5 mm diameter limestone aggregate had a nominal unconstrained compressive strength of 58.4 MPa (8.5 ksi) and density 2320 kg/m3. To explore geometric projectile scales, we conducted two sets of experiments. Projectiles with length-to-diameter ratio of ten were machined from 4340R® steel, round stock and had diameters and masses of 20.3 mm, 0.478 kg and 30.5 mm, 1.62 kg. Powder guns launched the projectiles to striking velocities between 400 and 1200 m/s. For these experiments, penetration depth increased as striking velocity increased. When depth of penetration data was divided by a length scale determined from our model, the data collapsed on a single curve. Thus, a single dimensionless penetration depth versus striking velocity prediction was in good agreement with the data at two geometric projectile scales for striking velocities between 400 and 1200 m/s. In addition, we conducted experiments with AerMet 100R® steel projectiles and compared depth of penetration and post-test nose erosion data with results from the 4340R® steel projectiles.

Keywords: penetration, ogive-nose steel rods, geometric and material scales.

INTRODUCTION

This paper completes our work on laboratory-scale, concrete-penetration experiments for striking velocities between 400 and 1200 m/s. In our first study [1], we present a depth-of-penetration equation for ogive-nose projectiles and concrete targets. This penetration equation contains a single, dimensionless empirical constant S for fixed values of the target, unconstrained compressive strength f'_{uc}. The dimensionless constant S is obtained from depth of penetration versus striking velocity data and is independent of the projectile mass and geometry. In our second study [2], we present the special case of our penetration equation for ogive-nose, solid-rod projectiles. For solid-rod projectiles, the penetration equation [2] contains dimensionless groups of variables that display clearly the problem parameters. Our method requires penetration data to obtain the constant S, which depends only on target strength and is independent of the projectile parameters. So, from laboratory-scale experiments, we obtain S and can predict or estimate depth of penetration versus striking velocity for much more expensive field tests with larger-scale projectiles. While our laboratory-scale experiments are limited to 30.5 mm diameter, 1.62 kg projectiles, our equation predicts accurately the data published by Canfield and Clator [1, 3] for 76.2 mm diameter, 5.9 kg projectiles.

This study presents additional data and examines further the accuracy of our penetration models [1, 2]. In particular, the concrete targets for this study used a limestone aggregate (Mohs hardness scale [4] of 3.0), whereas the work in Ref. [2] used a harder quartz-based aggregate (Mohs hardness scale [4] of 7.0). In addition, we conducted experiments at two geometric projectile scales with 4340 R®, 45 and AerMet 100 R®, 53 [5] steel rod projectiles. While the aggregate and projectile hardnesses changed the amount of nose erosion, we

*Corresponding author.